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Droplets at Low Temperatures 
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to Ising 

We consider a variational problem on the d-dimensional lattice Z a which has 
applications in the study of the metastable behavior of the stochastic Ising 
model. The problem, an isoperimetric one, is to find what is the smallest area 
a finite subset of Z a can have restricted to three classes of subsets of Z a. If q~ is 
one of these subsets, we define its volume as the number of points in it and its 
area as the number of pairs of points in Z a which are neighbors and such that 
only one of them belongs to qk 

KEY WORDS: Discrete variational problem; Ising model; droplets; meta- 
stability. 

1. INTRODUCTION 

We consider  a var ia t ional  p rob lem which arises from the analysis of the 
metas table  behavior  of the f ini te-volume d-d imens ional  stochastic Ising model  
for very low tempera turesJ  5-9~ The p rob lem is to find what  is the smallest  
possible area wi thin  certain classes of subsets of Z a. F or  each ~b c Z a, finite, we 
define its vo lume  as the cardinal i ty  of this set, denoted  by 14[, and  its area, 
denoted  by Aa(~b), as the n u m b e r  of edges with only  one endpo in t  in 4, 

Aa(~b) = I{{x, y } : x E c k ,  yCek,  with d(x ,  y ) =  1}1 ( I )  

where d(x,  y) - Z~u= ~ [ x i -  yi[ is the lattice distance. If  ~b is a subset  of an  
/ -dimensional  subspace S of Z d, we also define the area of ~b inside this subspace 

A'(~b)---I{{x, y } : x ~ c k ,  y ~ S \ c k w i t h d ( x ,  y ) - -  1}[ (2) 
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The minimization problem is considered in three classes of subsets of 
Z a. The first class is 

~e(v) = {r c za :  Ir =v}  (3) 

The other two classes, denoted by cg,, + (v) and ~" ' - (v ) ,  are those con- 
taining subsets of Z a which can be obtained from a given parallelepiped r/ 
either by addition or by removal of v lattice sites: 

~e~.+ = {~ = q :  I~1 = I~1 +v} .  ~ , . - =  {~ c~/: I~bl = I q l -  v} (4) 

To our knowledge this discrete isoperimetric problem has not been 
solved before, though similar questions appear to be natural in the context 
of combinatorics. (~" z~ 

As already mentioned, these minimization questions arise in the 
analysis of metastability for the finite-volume stochastic Ising model at very 
low temperatures. This model is defined in the torus A u = { 1 ..... N} a with 
N a large but fixed positive integer and with periodic boundary conditions. 
The Hamiltonian is given by 

1 
H(tr)= - ~  ~ a(x)a(y)--~E a(x ) 

( x , y )  x 

where a ( x ) E { - 1 ,  +1} is the spin at site x~Au, the first sum is taken 
over all pairs of nearest neighbors in A u, the second sum is taken over all 
sites in AN, and h is the magnetic field, which we assume positive. 

Each configuration a ~ { - 1, + 1 } .4 ,̂ of this model defines a subset of 
Z a by {x: a ( x ) =  + 1 }. No confusion should arise if we use the same nota- 
tion for a configuration and the subset it defines. 

The Hamiltonian can also be written as 

H(a)=A(a)--h lal + H ( - - 1 )  

where - l ( x ) = - 1  for xeAu  is the configuration with all spins equal 
--1,1aI=I{X~AN:a(x)=+I}I, and A ( a ) i s  the number of nearest- 
neighbor sites with different spins. Therefore the variational problem 
restricted to the class Cg(v) corresponds to looking for the smallest possible 
energy among the configurations with a given magnetization 

1 
MA--[ANI ~ or(x) 

x ~ A N  

There are many ways to introduce a stochastic dynamics in this 
system. We introduce a Glauber dynamics (4) on which only one spin can 
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flip at a time and does so with Metropolis rate. This version of the 
stochastic Ising model is the process {a;} ,~o on { - 1 ,  + I }  A~ with c(x, tl), 
the rate with which the spin at site x flips when the current configuration 
is r/, given by 

c(x, t/) = exp - fl[A,,H(q)] + 

where 

E z 1 v ( x  ~> . :  . , P  

with ~/X(y)= ~/(y) if x ~ y and qX(x)= -~/(x) ,  the sum being taken over all 
nearest neighbors of x and for a real number  x, [ x ]  + --max{O, x}. The 
process {a;} ,~0 is reversible with respect to the Gibbs measure given by 

#(o') = (Z jv ) - '  exp[ - f i l l ( a ) ]  

ZN = ~ exp[ - f i l l (a)]  
r 

where fl is the inverse temperature of the system. 
One nice feature of this version is that it may be constructed in a very 

simple way: at each event of a Poisson point process {N(t)},>~o with rate 
N d one chooses a site x in AN with uniform distribution and flips its spin 
with probability c(x, tl). 

In { - 1 ,  + 1 } "~ there is a natural  partial order given as follows: r/~< ( 
i f  and only if r/(x)~<((x) for all x ~ A N .  This model is ferromagnetic or 
attractive in the following sense: if ~ / ( x ) = ( ( x ) =  +1 and v/~<(, then 
c(x, tl) >1 c(x, () and if t/(x) = ((x)  = - 1 and r/~< (, then c(x, tl) <~ c(x, (). 

For  A c { - l, + 1 } "~ define the hitting time of A starting at ~/, 

T'~(A) = inf{t >/O: a 7 cA} 

If A = { ( } ,  r  +1}  Au, we write, for simplicity, T " ( r  of 

One way to describe metastability is via the pathwise approach/3~ The 
metastable behavior at low temperatures manifests itself basically in that 
the system, for some choices of the initial configuration, may apparently 
reach equilibrium with respect to a measure which is quite different from 
the invariant measure for the process before it eventually reaches the true 
equilibrium measure; moreover,  the time on which this transition takes 
place is completely unpredictable as it converges, properly normalized and 
as the temperature decreases, to an exponential random variable/7-9). 
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To give an example on which the discrete variational problem con- 
sidered here is needed, consider the problem of stability of regular droplets 
in the three-dimensional finite-volume stochastic Ising model at very low 
temperatures. The problem is the study of the evolution of this process as 
it starts from a configuration where all + 1 spins are inside a single regular 
cluster. More precisely, we take as initial configurations for the process the 
set ~3 of configurations such that all spins are - 1  except those inside a 
parallelepiped with sides l~(q), 12(rl), and 13(q) with l~(q)>>. 12(/7)>/13(q).  

Starting in r/~ ~3, the process will spend a long time, "near" this con- 
figuration if the temperature is low, but eventually the droplet, that is, the 
subset of A N where the + 1 are, will either "shrink" and the process reaches 
-1 ,  the configuration with all spins equal - 1 ,  or "grow" and the process 
reaches + 1, the configuration with all spins + I. The decision on whether 
- 1  or + 1 is reached first is not random for very low temperatures, but is 
determined by a sharp condition on the sizes of the two smallest sides of 
the paraUelepiped defined by the initial configuration q. Moreover, it is 
possible to determine the scale of time needed for this decision, that is, the 
relaxation time for the process. 

Write L for the smallest integer larger than 2/17 and let F ( h ) =  
4L-LZh+Lh-h .  Now, F(h) is the cost of energy to produce what was 
called ~v) the "proto-critical droplet" in the two-dimensional Ising model 
starting from the configuration with all spins equal to - 1 .  This corre- 
sponds to a configuration with all sins - 1  except those inside a rectangle 
with lengths L and L - 1  together with an additional site adjacent to one 
of its larger sides. L is the critical length in the two-dimensional case. As 
was shown in ref. 7, this is a configuration through which the process will 
pass with large probability for low temperatures as it moves from - 1  to 
+ 1 and the time it takes for this transition grows like exp flF(h) as the 
temperature decreases. 

With no loss in generality we may take q ~ ~3 to be such that 

r/(x) = + 1 if x ~ { 1 ..... l,(r/)} • { l ..... 12(r/) } x { 1 ..... 13(r/) } 

q(x) = - 1 otherwise 

For a positive integer k define 

Qc(k)= {2k/(kh- 2) if k > 2/hotherwise (5) 

In ref. 6 the "generic case" for the magnetic field was considered by 
imposing that it does not assume a countable number of values. There was 
also the restriction to the more interesting case on which h < 1 and the 
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volume of the 
# g - - { h  E(0, 1): 
given q E ~3 we 
N >  ll(r/) + 2. 

Under  this 

whole system is large enough. More  precisely, define 
h = 2 / l + 2 / m  for two positive integers / and m}. For  a 
say that  we are in the standard case if h e ( 0 ,  1) \#g and 

condition 2/h is not  an integer and neither is Qc(13(q)) for 
any r/E ~3. The general case can be considered by taking h slighty smaller 
or larger so that  we are in the s tandard case and using coupling. 

The result for the stability of  regular droplets t6) is: 

Theorem 1. Let r/E ~3 in the s tandard case. For  any e > 0: 

(a) If  12(q) < Qc(13(r/)), 

lim P( T~( - 1 ) < T~( + 1 ), T~( - 1 ) < exp f i lE(h)  + e] ) = 1 
fl~oc 

where 

E(h )=~F(h ) -2 [ la (q )+1207) ]+13(~ l )12 (~ )h  if 13(q)>2/h 
[ h( L - 2) otherwise 

(b) If  12(q) > Qc(13(q)) 

lim P( T"( + 1 ) < T"( - 1 ), T"( + 1 ) < exp f l[F(h) + e] ) = 1 

(6) 

It is shown in ref. 6 that each configuration in ~3 defines a "basin of 
at t ract ion" in the sense hat if the process starts "near" this configuration it 
goes to ~3 with large probabil i ty if fl is large. Starting from r/E ~3,  the 
process spends most  of  time at r/ making many  quick trips around this 
basin of attraction. Eventually, after a very long time at low temperatures,  
in one of those trips it goes far enough and leaves this basin of  attraction. 
To do this it has to overcome an energy barrier  and its height provides a 
lower bound for the exit time through the following resul(7): 

Lemma 1. Let 6 e be a connected set and q E5  a such that 
H ( q ) < H ( ( )  for all ~ESek{q} .  Then for all ( E 5  a and e > 0  

lim P(T( ( )  < exp f l [H( ( )  - H(r/) -- e] ) = 0 

where T(r = inf{t >/0; 0, ~ = (} and {67},>_.o is the process restricted to 5 a. 

We say that a subset 5 a of  { - 1, + 1 } AN is connected if for any two 
configurations in 5P the process can move from one to the other without 
leaving 5g. 
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Therefore the process cannot leave the basin of attraction of ~/~ ~s 
before time of the order of exp/~x (height of the energy barrier) for low 
temperatures. 

To verify the condition of Lemma 1 that q is a local minimum of 
energy and to find the height of the energy barrier in the basin of attraction 
of this configuration, we have to solve the variational problem in cg'+(v) 
and cg~'- (v). 

The minimization problem in ~(v) arises in the analysis of the height 
of the energy barrier to be overcome by the process as it goes from - 1  to 
+1.  

2. RESULTS 

We start with the variational results in cg~. +(v) and r which are 
needed to prove Theorem 1. 

Define L(i), 1 <<, i<~ d, as the smallest integer larger than 2 ( i - 1  )/h for 
i >_-2 and L ( 1 ) =  2. A d-dimensional proto-critical droplet, denoted by Pa, 
is defined as 

d 
Pa = i~1 bi (7) 

where b,. is an/-dimensional parallelepiped with i -  1 sides with length L(i) 
and one with length L ( i ) -  1 with b,.c~ b /=  ~ if i ~ j ,  and if x~bi ,  then x 
is neighbor to b / for  j > i. 

Let 9~ a be the class of d-dimensional parallelepipeds. If q ~ 9t a, write 
Is(q) >>-12(q)>1 "" >/la(rl) for the lengths of its sides. 

Let r/= { 1 ..... /~(q)} x ... x { 1 ..... ld(q)} ~ ~a" Define 6 as a configura- 
tion obtained from r/ by the addition of all sites inside a (d -1) -d imen-  
sional proto-critical droplet in {/1(~/) + 1} x {1 ..... 12(q)} x ... x { 1,...,/d(r/)} 
and _q as one obtained from q by removing all sites inside {ll(r/)} x 
{1 ..... /2(~/)}x . . - x { !  ..... la(q)} except those in a (d-1)-dimensional  
proto-critical droplet. 

T h e o r e m  2. Let rle.~d, d>~2, be as above, with Id(q)>~L(d-1). 
Then: 

(a) H(r 7) =min{H(() ;  (e~g~'+(lPd_,[)}. 
(b) H(q_)=min{H(C); ~g's ' - ( IPa_~l)  }. 
(c) H ( ~ ) - H ( r / ) > 0  if 

(IPa-ll +(i))/ /IPa-II "~ 
,.-,I U 
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To state the variat ional result restricted to Cg(v) we need some 
notation. 

If  ~ c Z  d, let r be the class of  all configurations that  can be 
obtained from ~b by lattice translations, lattice rotations,  and lattice 
reflections. Write 0~b for the external boundary of ~b c Z d, 

0~b = { y r ~b: there exists x ~ ~b with d(x, y) = 1 } (8) 

and B(~b) for the box 

B ( ~ ) =  {1 <~x~<~lg(q~), 1 <~i<~d} (9) 

where, for p c Z a, finite 

li(p) = m a x { j :  p n {x,. = j} :/: ~ }  

- m a x { k :  p n  { x i = j }  = ~ ,  for j<~k} (10) 

is the length of p along direction i. 
Let L "a be the class of  configurations defined as follows: ~ ~ ~ a  if 

~ :  

(i) x = ( x t  ..... X a ) E ~ x i ~ l ,  l<~i<~d. 

(ii) { x ; = l } n ~ b : / : ~ ,  l<~i<<,d. 

(iii) IAqb)>~lj((o) if i<~j. 

To simplify the notation,  we write {x~=k}  instead of {x = (x] ..... xa) 
~ Za: x i = k } .  

A set ~b c Z d is called a j-dimensional block if it is a parallelepiped 
with d - j  sides with length 1 and the remaining j sides either all equal or 
assuming two successive positive integers. That  is, a j -d imensional  block is 
a set 

~b ~ g ( { x ~ z a :  1 <~xi<<.Li}) 

with L i -- 1 if i > j and L~ e { M, M + I }, 1 ~< i ~< j,  for some positive integer 
M. 

Call ~ n {x~=k}  a slice of ~ along direction i at position k. Call it an 
external slice on the positive (negative) direction i if it is nonempty  but 
~b n {x~ = k + 1} = ~ (~b n {x,. = k - 1} = ~ ) .  Clearly any slice of  a block is 
itself a block. On the other hand, if one adds a slice to a block, the result 
may  not be a block (see Remark  2 below). 

For  further reference we now organize some simple facts about  blocks 
which will be used later. 
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Let ~b be an /-dimensional block in Z d which we may take, without 
loss of generality, as a subset of 

S t=  {xa= 1 ..... x ,+,  = 1} (11) 

with Sd--  Z a. 

Remark 1. The external boundary of a block ~b, 0qS, is the union of 
2d disjoint blocks b~ ..... bzd. Each bk may be obtained by translation of one 
lattice unit of an external slice toward the outside of ~b. These blocks are 
not connected to each other, as, if x and y are points in different blocks, 
then d(x, y ) >  1 [ the notion of connectivity is the usual one in percolation 
theory: a set 5 a c Z u is connected if for any pair of its points, say x and y, 

- " for some positive integer n, in 5 a with there exists a sequence {.~;}~= l, 
z l = x ,  z , , = y  and d(zi, z g + l ) = l  for l ~ < i < n ] .  Now, 2 ( d - i )  of those 
blocks are obtained by translation of ~b by one lattice unit along the 
positive and negative directions i + 1, i + 2,..., d and are copies of ~ itself. 
Write 0~b for the collection of those 2 ( d - i )  blocks. The 2i remaining blocks 
are ( i -  1)-dimensional and are also subsets of St, ( 11 ). Write 0~b for the 
collection of those 2i blocks. Each block in 0~b is equal to one external slice 
of ~ on some direction j ~  { 1, 2 ..... i} translated by one lattice unit along 
this direction. 

The volumes of the blocks in 0~b may either all be equal or take two 
different values. If all sides of ~b along directions 1, 2,..., i have the same 
length, say ls(qS)= l, 1 ~< j ~ i, for some positive integer l, then all elements 
of 0~b are equal [ ( i - 1 ) -d imens iona l  blocks with length l] and are said 
to be big. If the sides of ~b along directions 1, 2 ..... i are not equal, say 
l j ( ~ b ) = l +  1 for 1 ~ < j ~ < k < i  and /s(~b)=l for k < j ~ < i  for some 
k ~ { 1 ..... i -  1 } and some positive integer l, the volumes of the elements of 
c3~b are l k -~ ( l+  1) ~-k or lk ( l+ 1) t - k - l .  In the first case we say that the 
block in 0~b is big. 

Remark 2. Let q~ be an /-dimensional block and b be a big block in 
c3__~. Then q5 u b is a block. 

Remark 3. If ~b and ~ are different blocks with ~b c ~, then at least 
one of the big blocks in 0~b is contained in ~b. 

Remark 4. If ~b and ~ are/-dimensional  blocks with volumes al and 
a2, respectively, with a~ ~< a2, then one can find b ~ g(q;) such that ~b c b. 

Let A i =  {a: there exists an /-dimensional block with volume a} for 
1 ~< i ~< d and for any positive integer v 

v i =  max{a ~ Ai: a <~ v} 
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Define b~(v) as the /-dimensional block in ~rd with volume _v g. Then 
bi(v) is the largest /-dimensional block with volume not larger than v. We 
may construct hi(v) as follows 

If v > 1, let L~(v) and M~(v) be given by 

and 

Li(v) = min{le  N: li>.v} (12) 

MAv)=max{me{O, 1 ..... i}:LT'(v)[LAv)-I]'-m~v} (13) 

Set b A 0 ) = ~ ,  b~(1)= {x:= 1, 1 <~j<~d}, and, if v>~2, 

b;(v) = { 1 ~ x: ~< lj; for 1 ~ j ~< d} (14) 

with l:=L~(v) for l~j<<.M~(v), lj=Li(v)-1 for M~(v)<j<.i, and Ij= I 
for i < j <~ d. 

For any positive integer v, let {v~} l ~ d  be defined by 

Vd=lba(v)l and vi = b i ( v -  ~ vj) (15) 
- -  j > i  - -  

Then 

vl= bl (v--~'. v~l = v - - ~  vi (16) 
j >  1 / I  j >  I 

The second equality holds since A, is the set of natural numbers. 
We now define ~a(v) as the set of configurations which, having 

volume v, resemble as much as possible a d-dimensional cube and, as we 
show here, have the smallest possible area. A configuration ~ belongs to 
~d(v) if [~[ = V and it has a decomposition 

d 

~= [..) ~, (17) 
i = l  

where each ~,., 1 <~i<~d, is an /-dimensional block with volume v~ [as in 
(15) above]; moreover, we impose the condition that those blocks are dis- 
joint and that each low-dimensional block is attached to an external slice 
of the larger-dimensional ones. More precisely, {~,.} d=l must satisfy the 
following: 

Condition a: ~i is an/-dimensional block with volume vi, 

~i~ r vi as in (15) above 

822/80/1-2-8 
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Condition b: The decomposition is disjoint 

~ i n ~ y = ~  if iv~j 

Condition c: Each ~;, i<d,  is inside the external boundary of all 
larger-dimensional blocks: 

for all pairs 1 ~< i < j ~< d we have ~j c O~j 

To prove that these conditions can be satisfied, we give a construction 
of an element of ~ of ~a(v) for v > l  and d > l .  If Oa_t---0, we may 
take ~eg(ba(v)) .  Otherwise take ~a~g(ba(v))  and ~a- i  chosen in 
8(ba_ i ( v - v a ) )  as a subset of one, say b a, of the big blocks in Old (big 
blocks as defined after Remark 1 above). By Remark 2 and the definition 
of v a we have L~a-~l =Va-~ < Ibal and therefore by Remarks 3 and 4 we 
can choose Ca- ~ c b a and have one of the big blocks in O~a_ ~, say b a- ~, 
also included in b a. If va_2=0,  we take ~=~aU~a-~ .  Otherwise take 
~ a _ 2 ~ # ( b ( v - V a - V a _ l ) )  as a subset of b a-I with ~a_2~O~a_l and 
~a_zCa~a. This construction goes on until either we reach vj=O for 
1 < j < d or ~l is obtained. 

Write ~a = U,,~=o ~a(v). 
We distinguish a subset ~ a  of ~ a  of what we call canonical elements 

or canonical configurations as those which satisfy the additional condition 
that each protuberance Ui~k ~ attached to the block ~k+~ is "almost a 
block." More precisely, elements of flu must satisfy Conditions a-c above 
and also the following: 

Condition d: B( U i ~ k ~)  is a k-dimensional block for 1 <<, k <~ d. 

An example of a configuration in ~2 is the proto-critical droplet, 
that is, a rectangle with sides L and L -  1, where L is the smallest integer 
larger than 2/h, with a single extra site neighbor to one of the largest sides. 
A configuration in ~2\~ '~ is the rectangle with sides with lengths L and 
L - 1 ,  as before, with the additional site attached to one of the shortest 
sides. 

The construction sketched above for elements of ~a  in fact only 
produces elements of ~d. 

Remark 5. In ffd each protuberance Ui<~k ~ ,  1 <~ k <~ d, is a subset of 
one of the big blocks in ~ for j /> k + 1 and the inclusion is strict. 

Areas of elements of ~d  are simple to compute. Take ~e~d(v )  with 
~i= Ud=l ~i' ~iE~(bi(vi)) a s  in (17). 
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Then 

d 

Aa(~)=  ~ A;(~;) (18) 
i = 1  

where A;(~i) is the area of  the block ~.; within the corresponding i-dimen- 
sional subspace of  Z a. 

Write a a for the smallest possible area in the class of  configurations in 
Z a with volume v, 

a min{Aa(~);q~crg(v)}  (19) a ~ =  

The minimization result in Cg(v) is as follows. 

Theorem 3. If ~ E ~a(v),  for some d~> 1 and v >/1, then 

Aa(~) -- a~ 

This result identifies a class of  configurations with volume v that we 
a It is not  true, however, that all subsets of Z a with can use to compute a v. 

d belong to ~d(v). A simple example in d =  2 of  a set volume v and area a,, 
with smallest area not in ~2 is obtained from a square of  length larger than 
or equal to 3 by removal of  two points at the corners on the same diagonal. 

The two-dimensional version of  this result was used in ref. 7 to verify 
that the energy barrier between - 1  and + 1 in this case is F(h) as defined 
above. 

3. PROOFS OF T H E O R E M S  2 A N D  3 

We prove first Theorem 3. The proof  of  Theorem 2 is quite simple 
once we have the results needed to prove Theorem 3. 

Rather than working with area o f  a configuration, it is simpler and 
sufficient for our purposes to introduce the auxiliary notion of projected 
area o f  a configuration q~, denoted by pAd(S).  We define it as twice the 
number of lines in Z a which intersect the given configuration. With this 
definition pAa(~) is equal to Aa(f~) for a class of  configurations which 
includes .~a(v). More precisely, if l is a line in Z a, that is, 

1= { x ~ Z a :  X=  Xo + k e i ; k  e Z}  

where e; is the unit vector along direction i, 1 <~ i <~ d, x o ~ Z d, and if ~q' is 
the set of all lines of Z a, we define 

PA"(~) = 2 I{z~:/a~#~}l (20) 
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If  ~b belongs to a j-dimensional subspace S of Z a, we also define its 
projected area within this subspace by considering only lines in S, 

PAJ(~)--2 I { / ~ :  t=S; t n~  ~ ~}1 (21) 

It is simple to verify the following result. 

I . e m m a  2. We have: 

(a) PAa(~)<~Aa(I) for all l = Z  a. 
(b) PAd(I) = Aa(~) if l ~ ~a. 

(c) PAa(l) = PAa(qb) if both ~ and ~b belong to :~a(v). 

F o r d > / 1  a n d v > / 0 1 e t  

pd = min{ PAa( ~): ~ c Z a, I l l  = v} (22) 

Theorem 3 follows from the next result. 

i . e m m a  3. If ~ ~ ~a(v), for some d>~ 1 and v >/0, then 

eA~(l) = p~ 

That Lemma 3 implies the theorem is a consequence of Lemma 2: if 
we assume Lemma 3 and l ~ d ( v ) ,  then pa~=PAa(~)<.PAd(ok) for any 
~ z  ~, I~l=v; by parts (a) and (b) of Lemma 2, PAa(ck)~Aa(ck) and 
pAd(~)=Ad(I), SO that Ad(l)~Ad(qb) for any qbcZ d, I~1 = v  and the 
theorem is true. 

We prove Lemma 3 using induction in the dimension d. Let P(d) be 
the property that Lemma 3 is true for dimension d, that is, 

P(d) -"For  lattice dimension d we have 

d pAd(~) for all l ~ ~d(v) and v/> 1" pv = 

In dimension d =  1 this property is trivial and ~ ( v )  corresponds to 
the set of all intervals of length v in Z. 

We now prove that P ( d -  1) implies P(d) for d~>2. To do this we start 
with an arbitrary initial configuration in Z a and use P ( d - 1 )  to modify it 
step by step into a configuration in ~ a  with the same volume but with 
smaller or equal projected area. From this the validity of P(d) follows. We 
use successive Greek letters to denote the configurations in each step of this 
process. 

Let a c Z  "d, [0q =v.  As mentioned before, this is the most general 
case, as any configuration in Z a has an equivalent one in Z a. Write 
ai = Ia n {x 1 = i}l for the volume of 0c in the i-th slice across direction 1. 
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If A=max{a ; ;  1 ~<i~<l~(00} with l~(00 given by (10) and s c ~  ~ is 
the set of lines in Z a which are perpendicular to direction 1, then 

PAaOx)=2 I { l e - ~ \ L P "  l c ~ } l  + ~ pAd-'(o~ca{x, =i})  
i = l  

fi(ot) 

~>2A+ 2 PA't-l(o~{x'=i}) 
i = l  

(23) 

since the number of lines along direction 1 intersecting ~ cannot be smaller 
than A and if l e  ~ ,  then l c  {x~ = i} for some i. 

By (22) we have 

PAa(ot) >>. 2A + ~ pQa--I (24) 
i = l  

Now we verify that if P ( d -  1) is true, then the right-hand side of (24) 
actually corresponds to the projected area of a subset of Z a. To do this we 
use the following result. 

I . e mm a  4. If ~e~a(v) [set of canonical elements of Na(v)] for 
some d>~ 1 and v~> 1, then there exists Vle~a(v+ 1) with ~ c q .  

Proof. Let {vi},.a=, and {(v+l)~}a=~ be the decompositions of v 
and v+  1, respectively, as in (15), and let / = m a x { i :  (v+  1);#v~} >~1. If 
I = 1 ,  ( v + l ) z = v z + l .  If I > 1  and L--Lz(~_.~=~(v+l)i) and M -  
M z L z M z (v+  1)i) as defined z(Z;=~ (v+  1);), with l(~,i=l (v+ 1);) and i(~.i=l 
in (12), we have ( v + l ) i = 0  for i < I  as ( v+l ) z=L~(L- -1 )  z-M, 
57~=, (v+  1)~=Z~=, v~+ 1, and Y'.[= ~ v~<LM(L - 1) z-M [the first equality 
is the definition of (v + 1 )z, the second holds because v; = (v + I )~ for i > / ,  
and the third follows from the definition of I].  Therefore 

(v+ l)z= ~ I)i'~- 1 (25) 
i ~ l  

Consider an arbitrary ~ = U/a= 4, e ~d(v) with { ~i}/a=, as in (17). We now 
construct r/= U,.a= i r h e ~d(v + 1 ) with ~ = r/. 

If U~=~ ~ ; = ~ ,  take r /~=~ for i > I  and r/z= {x} with x chosen in a 
big block of 0~j, for j <~ I (big blocks as defined after Remark 1 ). That there 
exists such an x follows from Remark 5 above. 

Now suppose z IU~=I~,I=c>0. If I<d,  set ~/;=~; for i>I. Take 
~/i e g(bz(c + 1)) such that r h ~ U~= ~ ~ and qk = ~Z~ for k < L Note that 
IqA=lb/c+l)l=(v+l),=lU~=,~,l+l by (25). I 
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Let A~ >/A2 >/ ... i> A~,~,~ be an ordering of the numbers 

a l , a z  ..... at,~,~. For each A i, 1 <<.i<~ll(ot), find a []ic {xi =i} in ~ a - l ( A i )  
so that if I is a line along direction 1 and / n  fli :~ ~Z/, then /c~ flj 4: ~ for 
all 1 <~j<~i<~ll(oO, so that each fl~ is smaller than flj. if l<~j<i<<.lj(oO. 
This can be done by Lemma 4. In this case we say that { fl;} ~'~=~ is a nonin- 

creasing sequence of elements in ~ a - t .  Note that we could have a~ = 0 for 
some 1<  i <  l~(ct) (if, for instance, ct is disconnected) and in this case we 
would have l l ( f l )<  12(~). 

Then fl = I I/,~ w i= l fli satisfies 

/ll~) 

Paa(oO >1 2A + y'  p',~,- ' = PAa( f l )  (26) 
i=1 

Configuration fl is the union of ll(fl)<~l~(oL) (d-1)-d imensional  
configurations (slices of fl), which may be different. 

We now verify that if two slices are smaller than the first and larger 
one, fl~, the best (to minimize the area) is to enlarge one as much as 
possible at the expense of the other with the restriction that both should 
remain smaller than fl~. This restriction ensures that the number of lines 
along direction 1 intersecting the configuration remains equal to A. The 
following results are used to prove this. They establish properties in any 
lattice dimension n >~ 1 provided P(n) holds. We will apply these results in 
the induction argument with n = d -  1. 

I.emma 5. Let P(n)  be true and s and 42 be two arbitrary con- 
figurations in Z", n >/1. Then 

P A " ( 4 , )  + PA"(s 2)/> PA"(rl~) + PA"(q2)  (27) 

for any qt and q2 such that ql ~ " ( 1 4 1  n421) and q 2 ~ " ( 1 4 1  u421). 

Proof.  As we assume that P(n) holds, it is enough to prove (27) with 
r/1 =41 n42 and q2=41 tO42. 

Let I be a line in Z". First consider the case in which lc~4~ c~42 = ~ .  
If l c~(~  u42)  is also empty, this line does not contribute to any of the 
projected areas in the inequality. If l c~(4~ u~2) is not empty, this line 
contributes to at least one of the projected areas in the left-hand side, while 
it does the same only for the second term in the right-hand side. 

If/c~4~ ('~42 is not empty, then /intersects 4~, 42 and 4t u42 ,  there- 
fore contributing to all terms in the inequality (27). II 

Lomma 6. Let P(n) be true, 4 and ~b be elements of ~ "  c~ L'" such that 
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and b be an n-dimensional block satisfying B(q~)~b, B(~)r  [B(~) as in 
(9)]. Then there exist a and z in &" ca~r" satisfying 

lal < I~1 

r o b  

I~1 + I~1 = Io1 + 131 

PA"(r + PAn(C,) >1 eA"(~) + eA"(r) 

Proof. As B(~) is smaller than b, let 

J = m i n { i :  li(~) < li(b)} e { 1 ..... n} 

Define ~ = { x ~ Z " ; z - x + e j ~ r  where z = ( l , ( ~ ) + l  ..... l , (~ )+1 )  
and ej is the unit vector on direction J. This is the configuration obtained 
from ~ by inversion on all lattice directions inside B(O~) followed by a 
translation of one lattice unit along direction J. 

Apply Lemma 5 with ~ i = ~  and ~ = ~  and take r h = a  and r h = r .  
Then I~1 = I~c~ ~l < I~1 because the point with all coordinates equal to one 
is in ~ (as ~ : ~ e Z ' " )  but does not belong to ~ [as it would imply that 
the point with coordinates x,=l~(4)), i r  and xj=lj(q~)+ 1 belongs to 
0~]. It is also clear that ~ to ~ cannot have more than one additional slice 
on direction J since ~ moves only one lattice unit in that direction. As 
r e ~ ' ( l ~ t o ~ l ) ,  the same is true for it, with r o b .  II 

I . e mm a  7. Let P(n) be true, ~ and ~ be elements of ~"c~ Z'" such 
that 

and b be an n-dimensional block satisfying ~b PB(~b)--b. Then there exist 
and r in if"  c~ ~'" satisfying 

lal < I~1 

r c b  

I l l  + I~1 = I~1 + I~1 

PA"( ~) + PA"( ~b ) >>. eA"(a) + PA"( r) 

Remark. This result (and its proof) is very similar to Lemma 6. The 
difference is that, as B(~)--b,  if we shift it by one lattice unit and apply 
Lemma 5 as done in the previous lemma, the condition z c b will not be 
true. 
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Proof. Define ~ = { x e Z " ;  z - x e ( ~ } ,  where : = ( / , ( ~ b ) + l  ..... 
l,(~) + 1 ), for the configuration obtained from ~b by inversion on all lattice 
directions. 

Apply Lemma 5 with ~l = ~  and ~2=~ and take t h=a  and qz=r. 
Again Iol = 14~c~ ~1 < I~1 because the point with all coordinates equal to one 
is in ~ (as ~ # ~ z X " ) ,  but does not belong to ~ [as it would imply that 
the point with coordinates x ;=  lj(~), 1 4i<~d, belongs to q, contradicting 
the hypothesis that ~b # B(~)]. It is also clear that ~w ~ cannot be larger 
than b and the same is also true for r ~ " ( l ~ u ~ l ) .  I 

We now apply these results to 

i = l  

as in (26), and write fl ;= U~=--i I fli../, { a - i  fl;.j}j= l being their decomposition in 
blocks. 

Let us say that ,8j is large if flj.a-i is equal to ill.a-l translated to 
{xl = j}  along direction 1 and that it is small otherwise. 

A fig small can be of two types: 

I. B(flfl is smaller than ill. a-l ,  that is, B(flf lcp,  B(flfl~p, for p 
equal to the translation of i l l .a- i  to the subspace {x I = j} .  

2. B(flfl is equal to the translation offll .a-i to {xl = j} .  

Suppose fl is such that there is a flj, 1 <~j<l~(fl), which is small of 
type 1. In this case we have at least two slices, flj and fl~,cpl, which are small 
of type 1. Apply Lemma 6 with n = d -  1, ~ equal to ]?t,~pl translated along 
direction 1 to {x l=  1}, ~b equal to flj translated to { x l =  1}, and b equal 
to ill.a-,. Let 7 be obtained by replacing fl: with r and fl~,l#) by a. More 
precisely, 

Ilia) 

Y= U ~,i ,  y ; e ~  "T-1 
i = l  

with 

y,=fl, if i r  

yj= {x" x - ( j -  1) e I ~ r }  is the translation of r to {x, = j } ,  and 

Y/,~) = {x: x -  ( l , ( f l ) -  1)el e or} 
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is the translation of tr along the positive direction 1 to get a configuration 
in {x~ = l~(fl)}. 

The number  of lines of Z d along direction I which intersects y is still 
equal to A and Lemma 5 implies that the modification on slices j and l~(fl) 
does not  increase the projected area. Therefore 

pAa(oO >t PAa(fl) >~ pAa(y) (28) 

The procedure used to go from fl to y can be repeated as long as there 
is a flj small of type 1 for some 1 <<,j<lt(fl). As it always removes points 
from the last slice, fl~,l/~), it is possible that eventually this slice is emptied. 
In this case, the procedure starts again with the new configuration which 
is shorter along direction 1 and with removals now occurring at the current 
last slice along this direction. 

Let 

It(5) 

5 = U 5;, Zl(5) 6(P) 
i=1 

be the final configuration on which this procedure can no longer be applied 
because no 5; is small of type 1 for 1 ~< i < 1~(5). 

Suppose that there exists a 5 ,  1 ~< i < l~(5), which is small of type 2 
and therefore there exist at least two slices, 5; and 5 t ,~ ,  with this property. 
Apply Lemma 7 with n = d -  1, ~ equal to 5/~c6) translated along direction 
1 to {xl = 1}, ~b equal to 5; translated to {Xl = 1}, and b equal to 5Ld_ ~. 
Let e be the configuration obtained by replacing 5; with z and 5/,~6) by a 
given by Lemma 7. As before we have 

pAd(?) >1 pAd(5) >~ pAd(e) (29) 

Apply this procedure as many times as possible. Eventually it can no 
longer be applied because all slices are large (except, possibly the last one). 
Thus if we call 

U 
j = l  

this final subset of Z d, we have that ( Z d - l ,  1 ~<j</~(() ,  are equal up to 
a translation along direction 1. 

Let K e { 2 ..... d} be such that 

lK(()=min{I,(~): ie  {2 ..... d}} = min{l , ( ( , ) :  i e  {2 ..... d}} 
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Suppose B(()  is not a block. We apply to ( one of  two transformations.  

Transformation 1. B(() is not a block and ll(()~< l K ( ( ) -  1. Then 

a = I(c~ {xK=Z~(~)}l ~z,(~) I-I /,(() 
i ~ l , K  

�9 ~ < [ I K ( ( ) - I ]  I-I l , ( ( )<~l (c~{x ,=l} l -b  
i ~ l , K  

In this case define a new configuration r /ob ta ined  from ( by excluding 
the points in (c~ { x r =  Ix(()} and adding them to the ( d - 1 ) - d i m e n s i o n a l  
subspace {Xl = l~(() + 1} such that  

Vh,(.)+,-rlc~ {x, =11(()+ 1} ~ ~"-'(1~ ~ {xK=/K(r l) 

and every line along direction 1 intersecting q c~ {x~ = ll(q) + 1 } also inter- 
sects r/c~ { xl = 1 }. 

This last condition can be satisfied as a consequence of the inequality 
between a and b above and Lemma  4. Note  that  

. j =  cj\{x,~= IK(r 

is a ( d -  1 )-dimensional block. Therefore q is also a nonincreasing sequence 
of elements in ~dc~ X a with ll(q) = l l ( ()  + 1 and 

PAa(e) >1 PA#(() >1 pAa(q) 

By repeating this procedure if necessary we eventually reach a configura- 
tion with the appropr ia te  length on direction I. 

Transformation 2. Consider now the case on which B(() is not a 
block and l~(()>~12(()+ 1 >~lK(()+  1. In this case we remove points on 
( n  {x I = It(()} and add them to the subspace {Xx = lx(()+1}. 

As all lines along direction 1 which intersect (j,(r also intersect ( i ,  we 
have 

We also have 

with b I -- 11(() - 1, 
assume l l(()  >/12(() + 1, 

pAd(() = pAa((\(mr + pA a- l((i,(r (30) 

(ff\(,,(o) n { x K =  I} = {I <~x,<~bg} (31) 

b K =  1, and bi= li(() for i r  { 1, K}. Moreover ,  as we 

{1 <~x,<~bi} = {1 ~x,<.c,} (32) 
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with cl =12((), CK = 1, and ci=li((). The right-hand side of (32) is a 

( d -  1 )-dimensional block (therefore an element of .r 1) with volume that 
is larger than or equal to [(/~ll. Thus, by Lemma 4, we can find co e d~(~,) 

such that (a) w e { x r = l r ( ( ) + l  }, (b) ~ e ~ d - t ( [ ( t . o l ) ,  and (c) all lines 
along direction K intersecting o9 also intersect ( \ ( m c r  If we define 
0 = ( ( \ ( / , o )  w o9, we have 

pad(() = pAd( ( \(hlO) + pA d- l( og ) = pAd(O) (33) 

The first equality in (33) is true by (30), (a) and (b) of the definition 
of co, and part (c) of Lemma 2. The second equality holds by (c) [as in 
(23) above, with ~ l  replaced by ~ ,  the set of lines of Z d perpendicular 
to direction K]. Now organize the slices of 0 which sat isfy/ , (()  = / , (0 )  + 1 
as done in transforming ~ to ( and repeat the previous arguments until the 
appropriate length along direction 1 is obtained. 

Therefore if B(() is not a block, it can be modified as described above 
into a configuration, say t, so that {1 <~xi<~li(t), 1 <~i<~d} is a d-dimen- 
sional block. Moreover, t is almost a block in the sense that it is a block 
with at most two faces which are eroded. If only one face is eroded, then 
the theorem is proven. Assume that this is not the case, that is, there exist 
Q e { 2 ..... d} such that 

{l<..x,<.. .e,;l<.. i<.d}ctc{l<.x,<.E,;l<~i<.. .d} (34) 

where ei=Ei=l~(t) for ir {1, Q}, e~+ 1 = E,.= l~0) for i e  {1, Q}, and both 
inclusions are strict. 

The last step in the proof of the theorem is to transform t into a con- 
figuration with at most one face eroded. 

Suppose that the element of ~d-~  chosen on the subspace {X 1 =/~(1)}, 
tt,q o, has the length along direction Q that is smaller than lo(t). In this case 
l/,,~ and i ~  {xQ=/e( t )}  are disjoint and we have 

p A d ( t ) = p A d ( z ) + p A d - ' ( t m , O + p A d - ' ( t n { x Q = I Q ( t ) } )  (35) 

where X= {1 <x~<<.e~; 1 <~i<~d} as in (34). 
To verify (35) note that the lines that could contribute to both ( d -  1)- 

dimensional projected areas in the right-hand side while contributing only 
once to pAd(t) would have to be subset of {x, = ll(t), xq = 1o(0}, which is 
disjoint from t. 

We then apply Lemmas 6 and 7 to %,~ and t c-~ {x o = lo(t)}, increasing 
one and decreasing the other until the largest one, say the one on 

{x~ =l , ( t )} ,  which is in N a - i ,  has its (d-1)-d imensional  block equal to 
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the face of;( [ Z defined after Eq. (35)]. The resulting configuration is in Nd 
and Lemma 3 is proven in this case. 

The last possibility to be considered is that l/, m and lea { x Q = l e 0 )  } 
are not disjoint. In this case zht,i must have its ( d - 1  )-dimensional block 
equal to a face of Z and t is already in ~d. This finishes the proof of Lemma 
2 and therefore of Theorem 3. 

We now give the proof of Theorem 2. 
For part (a) take 0~e~g"'+(c) with c =  IPd-II- Then 

pAa(ot)>jpAa(otca{xt<ll(rl)})+ ~ pAa-'(~xca{xl=j} 
j ~ l l l t l t +  1 

(36) 

To check this, note that a line along direction 1 which intersects 
ca {x~ >/l~(r/) + 1} but not e n {x~ ~< ll(q)} contributes only to the left- 

hand side of (36). 
By Lemma 5 and Theorem 3 the second therm in the right-hand 

side of (36) is larger than or equal to pal-1 [as in (22)] with e l =  
I~ ca {xl >1 ll(q) + 1 } l- Now, pd-  1 is the ( d -  1)-dimensional area of an 
element of ,~d- ~(C -- 1 ), say 0Zl, that, by Lemma 4, we may choose so that 

pAd(m) ) PAd((ol. (3 {X 1 ~ l,(q)} ) w ~.~ ) (37) 

The same arguments give 

pAd(ot)>~pAd((o~n{x~<~l,(q)}~{x,>~l})w~u~,_) (38) 

with ~,_ conveniently chosen in ~ a - ' ( c 2 )  with c2 = 10r {xl ~< 0} I. 
Doing the same along all lattice directions, we finally get 

(:d ) pAd(~ PAa q ~i >~pAd(?I w~) (39) 

where ~ a - l ( c i )  with ci=l~xca{x~l~(rl)-q-1}l if i is odd and 
c~= I~n {xt~<0}l if i is even and ~ a - l ( c ) .  The last inequality holds 
again by Lemma 4 and Theorem 3. We may chose ~ in {Xu = la(r/)} so that 
q w 0Z = r 7 and part (a) is proven. 

For part (b) take now ct s~g"'-(c). Follow the arguments in the proof 
of Theorem 3 to get ( and transform it as done in Transformation 2. With 
this we get to a configuration on which all missing sites as compared to q 
are in r/ca {xa= la(r/)}. By choosing the (d-1)-dimensional  configuration 
there in ~a-~(c)  we may get r /and part (b) is proven. 

To verify part (c), first note that the same proofs given for (a) and (b) 
hold if instead of c one adds or removes a smaller number k of sites 
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with g and _q replaced by the corresponding configurations with Pal-I 
replaced by an element p k e ~ a - l ( k ) .  This element is a union of blocks 
as in (17). Each/-dimensional block in this decomposition has sides which 
are smaller than L(i) ,  the smallest integer larger than 2 ( i - 1 ) / h ,  since 
k <~ c = ~a= i L(J)  j -  l [L(i) -- 1 ]. We finish the proof of (c) by verifying that 
each of these blocks have positive energy, which is a simple computation. 
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